Chinese researchers break RSA encryption with a quantum computer
(www.csoonline.com)
from BrikoX@lemmy.zip to cybersecurity@sh.itjust.works on 15 Oct 2024 01:28
https://lemmy.zip/post/24515831
from BrikoX@lemmy.zip to cybersecurity@sh.itjust.works on 15 Oct 2024 01:28
https://lemmy.zip/post/24515831
The research team, led by Wang Chao from Shanghai University, found that D-Wave’s quantum computers can optimize problem-solving in a way that makes it possible to attack encryption methods such as RSA.
Paper: cjc.ict.ac.cn/online/…/wc-202458160402.pdf
Follow up to lemmy.ca/post/30853830
threaded - newest
Chinese researchers break 22-bit RSA encryption.
It’s still important news but that headline is deliberately missing that crucial little bit of scope.
Now I can stop following the thread. So much useless information, and now I can search a decent article by the correct title
Thx for saving me a click
Thank you sir
Isnt that something you can break on a raspberry pi in like seconds?
Much less than seconds. The naive algorithm is a loop to 4096 doing one integer divide on each iteration. I think the limiting factor is going to be the memory access to load the code from main memory, so you can say the whole thing can basically be done within the length of time of one memory fetch.
I still think it’s a significant development. Doing a toy problem on a radically different hardware platform that has the potential to scale up and tackle real-scale problems orders of magnitude more efficiently than the existing architecture is progress. I’m just saying that saying “break RSA” is pure clickbait.
Edit: I got curious whether my intuition about this is right. Reading from main memory on an ARM generally takes 100 ns, and doing an integer modulo takes around 40 cycles apparently. So the total time is way longer than a memory read. If you assume 1 GHz clock speed, and that the memory reads and looping code are dwarfed by the cost of the modulo operation itself, then a Raspberry Pi can factor a 22-bit integer in about 163 microseconds. The memory operation is negligible.
This is the reason I love lemmy
Funny, neither the article nor the paper seem to mention Shor’s Algorithm. I’m going to read up more on this in the morning.
Cracking encryption is one of the things we expect quantum computers to be extremely good at, so I’m not particularly surprised by this development.
D-wave is not a classical quantum computer. It is known to not be able to run Shors algorithm.
Wait, what the fuck?
“The computers are not general purpose, but rather are designed for quantum annealing. Specifically, the computers are designed to use quantum annealing to solve a single type of problem known as quadratic unconstrained binary optimization. As of 2015, it was still debated whether large-scale entanglement takes place in D-Wave Two, and whether current or future generations of D-Wave computers will have any advantage over classical computers.” en.wikipedia.org/wiki/D-Wave_Two
I’m not aware this has changed.
On the plus side: they have >5000 qbits
.
I think Schneier wrote this well before quantum computers were a reality - did he miss something fundamental in regards to them? Quantum computers are relatively new but the theory behind them is nearly a century old.
I’m not a physicist but quantum particles were still considered to be matter the last time I checked.
The issue here is that Schneier is discussing brute force forward computation of cryptography (IIRC of AES). Quantum computers don’t iteratively attack primes by attempting to compute all possible primes. The current conventional computer attacks against RSA also aren’t brute force hence why the advised size of an RSA key right now is 4096 bits.
This calculation only holds if there is no faster way than brute force iterating the entire key space.
Good post, but dear god the text colors make my eyes hurt.
So two things that are not accounted for here:
This is why perfect forward secrecy is mandatory even if you have quantum encryption on your VPN.
As for file storage, even if it’s quantum resistant, we may see a time in the future where you need to periodically re-encrypt your files to keep them a little bit less in danger
Sure they did. Sure sure sure. We totally believe them.
There’s a lot of misinformation in this thread. Sure, they broke 22-bit RSA encryption. But here’s the thing - that’s proof that a suitably large quantum computer can break any size RSA encryption in the same amount of time it took to break 22-bit RSA encryption.
Because of the way the annealing process works, it’s a known-time process, no matter how many inputs or q-bits are used. We don’t have the ability to create a computer with sufficient q-bits to break anything more than 22-bit at the moment, but current estimates are that in 10 - 15 years we will have enough to break 1024-bit.
And it’ll take the same amount of time as this 22-bit process took.
And that basically means we need new encryption processes within 10-15 years, that are quantum safe, or all our encryption is belong to whoever has these quantum computers.