Fuck geometry
from muntedcrocodile@lemm.ee to science_memes@mander.xyz on 29 Nov 11:14
https://lemm.ee/post/48573493

#science_memes

threaded - newest

manucode@infosec.pub on 29 Nov 11:41 next collapse

1 • 1 + i • i = 1 + (-1) = 0 = 0 • 0

Pythagoras holds, provided there’s a 90° angle at A.

blackberrynoseferatu@lemmy.world on 29 Nov 11:51 next collapse

this is why it is still a theorem

suzune@ani.social on 29 Nov 11:53 next collapse

I’m so angry at people who think that distances can be imaginary.

lugal@lemmy.dbzer0.com on 29 Nov 12:12 next collapse

Never been together with people and still felt alone?

Brainsploosh@lemmy.world on 29 Nov 12:14 next collapse

They’re about as imaginary as numbers are in general.

Complex numbers have real application in harmonics like electronics, acoustics, structural dynamics, damping, regulating systems, optronics, lasers, interferometry, etc.

In all the above it’s used to express relative phase, depending on your need for precision you can see it as a time component. And time is definitely a direction.

kogasa@programming.dev on 30 Nov 16:03 collapse

That’s not relevant to what they said, which is that distances can’t be imaginary. They’re correct. A metric takes nonnegative real values by definition

Brainsploosh@lemmy.world on 30 Nov 16:49 collapse

Why can’t a complex number be described in a Banach-Tarsky space?

In such a case the difference between any two complex numbers would be a distance. And sure, formally a distance would need be a scalar, but for most practical use anyone would understand a vector as a distance with a direction.

kogasa@programming.dev on 30 Nov 17:52 collapse

The distance between two complex numbers is the modulus or their difference, a real number

Xerodin@lemm.ee on 29 Nov 13:02 next collapse

When talking about AC power, some of the power consumed doesn’t actually produce real work. It gets used in the generation of magnetic fields and charges in inductors and capacitors.

The power being used in an AC system can be simplified by using a right triangle. The x axis is the real power being used by resistive parts of the circuit (in kilowatts, KW). The y axis is reactive power, that is power being used to maintain magnetic fields and charges (in kilovolt-amperes reactive, KVAR). And the hypotenuse is the total power used by the circuit, or KVA (kilovolt-amperes).

Literal side note: they’re all the same units, but the different sides of the triangle are named differently to differentiate in writing or conversation which side of the power triangle is being talked about. Also, AC generator ratings are given in KVA, so you need to know the total impedance of your loads you want to power and do a bit of trig to see if your generator can support your loads.

The reactive component of AC power is denoted by complex numbers when converting from polar coordinates to Cartesian.

Anyways, I almost deleted this because I figured your comment was a joke, but complex numbers and right triangles have real world applications. But power triangles are really just simplifications of circles. By that I mean phasors rotating in a complex plane, because AC power is a sine wave.

spankmonkey@lemmy.world on 29 Nov 13:28 next collapse

By that I mean phasors rotating in a complex plane, because AC power is a sine wave.

I read the entire thing as Air Conditioning and it made me think my tired ass had forgotten something important and then here comes like whiplash when it clicked that you were talking about Alternating Current.

More coffee needed.

suzune@ani.social on 29 Nov 14:12 next collapse

Please be careful with two different things. Complex numbers have two components. Distances don’t. They are scalars. The length of the vector (0,1) is also 1. Just as a+bi will have the length sqrt(a^2 + b^2). You can also use polar coordinates for complex numbers. This way, you can see that i has length 1, which is the distance from 0.

The triangle in the example above adds a vector and a scalar value. You can only add two vectors: (1,0) + (0,1) which results in (1,1) with the proper length. Or you can calculate the length/distance (absolute values) of the complex numbers directly.

muntedcrocodile@lemm.ee on 29 Nov 14:49 collapse

Its another classic case of Euler’s Identity

technocrit@lemmy.dbzer0.com on 30 Nov 16:23 collapse

You’re mad at mathematicians for constructing complex valued metrics? It’s all just formalism, nothing personal.

suzune@ani.social on 01 Dec 05:45 collapse

Omg, yes. This is horrible. :)

Foofighter@discuss.tchncs.de on 29 Nov 13:42 collapse

But that’s not the definition of the absolut value, I.e. “distance” in complex numbers. That would be sqrt((1+i)(1-i)) = sqrt(2) Also the triangle inequality is also defined in complex numbers. This meme is advanced 4-4*2=0 Works only if you’re doing it wrong.

ShinkanTrain@lemmy.ml on 29 Nov 12:04 next collapse

It gets worse once you start doing trig on it

DavidGarcia@feddit.nl on 29 Nov 12:34 next collapse

I get it, it’s projected on a comlplex sphere. B and C are the same point

luciole@beehaw.org on 29 Nov 12:48 collapse

please stop making it make sense

calcopiritus@lemmy.world on 29 Nov 13:24 next collapse

This triangle is impossible.

If the distance between B and C is 0, B and C are the same points. If that is the case, the distances between A and B and A and C must be the same.

However, i ≠ 1.

If you want it to be real (hehe) the triangle should be like this:

    C
    | \
|i| |  \ 0
    |   \
    A---B
     |1|

Drawing that on mobile was a pain.

As the other guy said, you cannot have imaginary distances.

Also, you can only use Pythagoras with triangles that have a 90° angle. Nothing in the meme says that there’s a 90° angle. As I see it, there are only 0° and 180° angles.

Goodbye, I have to attend other memes to ruin.

thomasloven@lemmy.world on 29 Nov 15:04 next collapse

Context matters. In geometry i is a perfectly cromulent name for a real valued variable.

Clinicallydepressedpoochie@lemmy.world on 30 Nov 18:11 collapse

Oh shit, he used the word cromulent. Every one copy off this guy.

stevedice@sh.itjust.works on 30 Nov 19:40 collapse

That wouldn’t be cromulent, would it?

Dayroom7485@lemmy.world on 29 Nov 15:12 next collapse

Mad mobile drawing!!

muntedcrocodile@lemm.ee on 30 Nov 13:33 next collapse

Isnt it fine to assume a 90° angle its just that when u square side AC ur multiplying by i which also represents a rotation by 90° so u now nolonger have a triangle?

calcopiritus@lemmy.world on 30 Nov 14:35 collapse

It’s not fine to assume a 90° angle. The distance between B and C is 0. Therefore the angle formed by AB and AC is 0°.

If the angle is 90°, then BC should be sqrt(2), not 0. Since the length of both sides is 1. sqrt(|i|^2+|1|^2) = sqrt(2).

muntedcrocodile@lemm.ee on 30 Nov 14:59 collapse

So essentially what ur saying is. The imaginary and real arent 90° or pythagoras is only valid for real numbers?

technocrit@lemmy.dbzer0.com on 30 Nov 16:22 next collapse

As the other guy said, you cannot have imaginary distances.

Incorrect. There are complex valued metric spaces

And even if we assume real valued metrics, then i usually represents the unit vector (0,1) which has distance real 1.

stevedice@sh.itjust.works on 30 Nov 19:38 collapse

That’s NOT a metric. That’s a measure. Two wholly different things.

diaphanous@feddit.org on 30 Nov 20:07 collapse

It can be a pseudometric

stevedice@sh.itjust.works on 30 Nov 20:37 collapse

That’s more related to a metric but it still can’t be complex valued and it’s still not a measure.

planish@sh.itjust.works on 01 Dec 16:50 collapse

This is clearly meant to be a right triangle. And the distances between the points are the same (because the squares of the coordinate differences are the same), just the directions are different.

If you move 1 unit forward, turn the correct 90 degrees, and then move i units forward, you will end up back where you started.

calcopiritus@lemmy.world on 01 Dec 20:12 collapse

You can’t have a distance in a “different direction”. That’s what the |x| is for, which is the modulus. If you rotate a triangle, the length of the sides don’t change.

planish@sh.itjust.works on 01 Dec 21:32 collapse

The vector from one point to another in space has both a distance (magnitude) and a direction. Labeling the side with i only really makes sense if you say we’re looking at a vector of “i units that way”, and not at an assertion that these two points are a directionless i units apart. Then you’d have to break out the complex norms somebody mentioned.

Lemmygradwontallowme@hexbear.net on 29 Nov 14:05 next collapse

Wish me luck for I’m doing trig test with radians (2 pi rad = 360 ?)

muntedcrocodile@lemm.ee on 29 Nov 14:45 collapse

Radians are the objectivly better way to do angles tho. Just remeber π=180deg and ur right. Btw here is a another brain fuck the units radians/second is just Hz

Zagorath@aussie.zone on 29 Nov 15:05 next collapse

Radians are the objectivly better way to do angles

Yes, and tau is objectively better than pi. Just remember tau = 360°. Which is a full circle, which easier to work with than half a circle.

Lemmygradwontallowme@hexbear.net on 29 Nov 16:13 collapse

Thank you for reminding me!

Btw, Radians/sec = Hz? What is this, physics?

muntedcrocodile@lemm.ee on 29 Nov 23:05 next collapse

Engineering unit maths. Cos angles are unitless so radians/second =1/second=Hz

TheOakTree@lemm.ee on 30 Nov 17:28 collapse

The easiest way to think about it is that 1 full rotation (2*pi radians) in 1 second makes 1 Hz.

The number of rotations made in a second corresponds to Hz in the same way that the number of sine wave periods that fit in a second also represents Hz. This gif does a really good job of showing how rotation relates to sine/cosine waves, which just so happens to help visualize the rad/s -> Hz <- periods/s relationship:

<img alt="" src="https://www.mathwarehouse.com/animated-gifs/images/sine-cosine-unit-circle-animation.gif">

xylogx@lemmy.world on 29 Nov 14:37 next collapse

In the complex plane each of these vectors have magnitude 1 and the distance between them is square root of two as you would expect. In the real plane the imaginary part has a magnitude of zero and this is not a triangle but a line. No laws are broken here.

solomon42069@lemmy.world on 29 Nov 15:09 next collapse

I feel violated trying to read that in my brain.

OrganicMustard@lemmy.world on 29 Nov 16:11 next collapse

You can make something like this properly by defining a different metric. For example with metric dl^2^ = dx^2^ - dy^2^ the vector (1, 1) has length 0, so you can make a “triangle” with sides of lengths 1, -1 and 0.

kogasa@programming.dev on 30 Nov 16:06 collapse

That’s not a metric. In any metric, distances are positive between distinct points and 0 between equal points

technocrit@lemmy.dbzer0.com on 30 Nov 16:26 next collapse

This is true for real-valued metrics but not complex-valued metrics.

en.wikipedia.org/wiki/Complex_measure

kogasa@programming.dev on 30 Nov 17:51 collapse

Metric, not measure. Metrics are real by definition.

OrganicMustard@lemmy.world on 01 Dec 09:02 collapse

It depends which metric definition are you using. The one I wrote is a pseudo-Riemannian metric that is not positive defined.

Normally physicists use that generalized metric definition because spacetime in most cases has a metric signature of (-1, 1, 1, 1). Points with zero distance are not necessarily the same point, they just are in the same null geodesic.

kogasa@programming.dev on 01 Dec 16:52 collapse

You’re talking about a metric tensor on a pseudo-Riemannian manifold, I’m talking about a metric space. A metric in the sense of a metric space takes nonnegative real values. If you relax the condition that distinct points have nonzero distance, it’s a pseudometric.

deikoepfiges_dreirad@lemmy.zip on 29 Nov 16:35 next collapse

funny Interpretation: in the complex plane, the imaginary axis is orthogonal to the real axis. so instead of the edge marked with i (AC), imagine an edge of length 1 orthogonal to that edge. It would be identical to AB, so AC CB is 0.

propter_hog@hexbear.net on 29 Nov 17:12 collapse

But then CB couldn’t also be 0; wouldn’t it be cos(1 + i)? Or something like that.

deikoepfiges_dreirad@lemmy.zip on 29 Nov 17:42 collapse

oh I mixed up the points, I meant to say CB is 0 in the end

EtherWhack@lemmy.world on 29 Nov 16:56 next collapse

C and B have a wormhole between them

propter_hog@hexbear.net on 29 Nov 17:09 next collapse

i = 1 is the only logical choice

DragonTypeWyvern@midwest.social on 29 Nov 21:05 collapse

Literally, this is one of those questions where they’re testing logic and your understanding that the figures aren’t necessarily representative of physical reality.

model_tar_gz@lemmy.world on 29 Nov 22:08 next collapse

You didn’t really expect an imaginary triangle to behave like a real one, did you?

technocrit@lemmy.dbzer0.com on 30 Nov 16:29 next collapse

Maybe the problem is constructing a metric that makes this diagram true. Something like d(x,y) = | |x| - |y| | might work but I’m too lazy to check triangle inequality.

stevedice@sh.itjust.works on 30 Nov 19:35 collapse

Triangle inequality for your metric follows directly from the triangle inequality for the Euclidean metric. However, you don’t need a metric for the Pythagorean Theorem, you need an inner product and, by definition, an inner product doesn’t allow non-real values.

[deleted] on 30 Nov 16:39 next collapse

.

i_love_FFT@jlai.lu on 01 Dec 06:42 collapse

I kept seeing this pop up recently, and I finally understand it: it’s an introductory problem in Lorentzian general relativity.

AB is a space-like line, while AC is a time-like line. Typically, we would write AC as having distance of 1, but with a metric such that squaring it would produce a negative result. However it’s similar to multiplying i to the value.

BC has a distance of 0, but a better way of naming this line would be that it has a null interval, meaning that light would travel following this line and experience no distance nor time going by.

I’m sure PBS Spacetime would explain all of this better than me. I just woke up and can’t bother searching for the correct words on my phone.