from PersnickityPenguin@lemm.ee to technology@lemmy.world on 17 Oct 2023 05:45
https://lemm.ee/post/11759802
The first commercial PV solar product was nah just in 1909.
See story above, and original article in Modern Electrics magazine in 1909:
babel.hathitrust.org/cgi/pt?id=mdp.39015051407073
EDIT
Since people didn’t read past the headline, the article is about a startup company in 1905 that developed a commercial electrical solar panel by 1909 and was worth 160 million in today’s money.
In 1909, the inventor of the solar panel was kidnapped and ordered by his kidnappers to destroy all information about this solar panel. He was eventually released, although he did not destroy the solar panel or his documentation, he did shut down his company.
So this is a pretty fascinating development considering that at this time period we actually did have early production electric cars that were manufactured in larger quantities than gas vehicles, and now we learn that solar panels were commercially available, at least for a short time.
And the solar panels could generate a fair amount of electricity:
500 volts per 10 square ft, and a smaller demonstration panel that was 3 ft x 4 ft could generate 60 watts of power (10 volts @6 amps).
Additionally, the panels were designed to charge a battery backup system.
threaded - newest
I think it would have played out roughly the same. Energy density of fossil fuels is ahead of everything, along with it’s portability. Not to mention no one knew or cared about environmental issues then.
Might have made the transition easier though.
Some cared or questionned it. A local newspaper which is more than a century old, republished some old articles. One of those was about the coal consumption, how luch they comsumed back then, and how it would be consumed in the incoming decades, and asked what was going to be the outcome.
In the 30s, some english scientist pointed the raise of temperature too. It was minimal, but visible.
Exxon had detailed climate change predictions in the 1970s:
www.science.org/doi/10.1126/science.abk0063
I did not read any of your linked articles, but the answer is yes, fossil fuels most certainly would have dominated the 20th century because they are:
Edit: I was beaten by another commentator lol
LOL sorry bro
That being said, free electricity is free electricity. There are so many use cases for distributed small power systems, particularly in rural areas. I would bet that early solar could have found widespread use while yes, fossil fuels would still have dominated.
I fully agree. In cities and places with a grid, fossil fuels will absolutely dominate, while rural grids/independent homeowners could use solar. However, I do think the cost of acquiring such panels could be prohibitively expensive for some rural homeowners.
Yes, but in 1909 they didn’t have a grid yet.
It’s not free though, solar panels back then would be prohibitively expensive for the number required to get any amount of useful power. I suspect they weren’t all that durable or weatherproof either, so that’s even more cost in periodic replacement.
Meanwhile your neighbour is burning this black stuff that’s almost as cheap as dirt and getting huge amounts of energy out of it.
Coal required someone to dig the mine, build the railroad and powerplant, not to mention build the electricity infrastructure. That was a huge expense and made a lot of people rich.
We do t have a cost information to judge these by, but the infrastructure costs were certainly far lower for solar panels.
Doubtful that it would have been very different. We would probably have more solar for home electrification. But with storage options being even less viable back then, we still would have needed a grid.
but the biggest benefit for fossil fuels were cars. And there I don’t see how EVs would have been viable (yes, I know there were prototypes back then)
Fun fact - for a short time, there were more electric cars than gas:
theguardian.com/…/lost-history-electric-car-futur…
These solar panels must have been using some older technology fundamentally different from the one used in current solar panels because the PN junction, basis of the photocell, was not invented until 1939
Likey also didn’t contain rare earth minerals - no where near as effective but could have been less damaging and easier to make.
Then again, could have been a combination of arsenic, asbestos and cocaine so who knows.
I was too curious:
Cove’s device was a sort of thermocouple, and thus not based on newly-discovered natural processes or scientific principles. In the patent application the device was described as follows: A thermo-electric battery and appurtenances comprising a block of incombustible, non-conductive material, a series of pairs of elements comprising a plurality of elements formed of an alloy of antinomy and zinc, and a plurality of elements connecting said antinomy and zinc elements, said elements connecting said first-mentioned elements being alternatively of copper and of an alloy of nickel, copper and zinc.
journals.lib.unb.ca/index.php/MCR/…/22231
No such thing as too curious… unless you are a cat. Little dangerous there.
If im reading this correctly, and translated to english:
non conductive block
two different alloys - zinc and opposite to zinc (antinomy) v copper and nickle/copper/zinc.
assuming light hits, produces difference between metal and opposite metal, results in current flow through wire to equalize. Not sure how rare earth Nickle and zinc are, but suppose its not cobalt.
So it’s a Seebeck Effect generator and really isn’t what we’d call a solar device today.
Sorry - above my pay grade knowing what that is. Got a bit of education to get through.
Basically when there’s a temperature difference been two different metals that are touching a small current is produced. You can also go backwards and use electricity to create a temperature difference (Peltier Effect).
They have niche applications because the effect is pretty small. Hardly a realistic substitute for solar panels that use the photovoltaic effect.
Does this mean - in theory - I can put one metal plate out in sun, one in shade, connect with a wire? Or is it a contact surface area thing?
Pretty sure they have to be together like a creme biscuit. You can’t put one plate on the equator and one in Antarctica and generate infinite electricity
I mean, it’s a DC current so would bleed off over distance anyway.
What if you had some sort of insulator, maybe a delicious layer of chocolate, making some sort of galactic wagon wheel?
It could work… but you would need an adequate layer of vanilla creme to compliment the chocolate.
Engineering is delicious.
Well you could, but the resistance in a wire that long would kill it.
Sure that does work but it’s not efficient.
Thermal solar generators do exist but they use a liquid as a heat transport mechanism. These use mirrors to focus the sun into a single point. In general you get more efficiency when there’s a larger temperature difference.
You could also get infinite energy by digging a deep hole since it gets hotter there deeper you dig. It’s just pretty expensive.
Geothermal is the solution we need more of.
This is how fridges work in reverse right? Apply current and make one side really cold?
Fridges work on gas pressure - compress a gas it heats up, decompress a gas it cools…
Wait… then what am I thinking of? I’m sure this effect is used somewhere
Looks like you are also a kiwi (that or an AI bot cus i see you everywhere) so probably in an electric chilibin- the reverse effect can be used to cool one plate of metal and heat up the other side.
The whole internet is AI bots bro. You’re the only real human here.
If I was a human though, I would be Kiwi. Kia ora!
Yeah, I think that’s what I was thinking of.
You are thinking of a thermo-electric cooler (TEC) or peltier cooler. They actually are used on smaller wine fridges but not full sized fridges. They are light-weight, electrically efficient, and reliable. They were also used in the early days of CPU overclocking.
The device you’re thinking of might be a peltier or thermoelectric cooler (TEC). But yes. They’re way less efficient than a vapor compression refrigerator, though.
Ohhhh… Thanks!
Like the very small fridges that work for a single soda can? Refrigerators use the liquid/gas transition to move heat around. It’s much more efficient.
The only real advantage of Peltiers are simplicity and size.
Nickel and zinc are very common to my knowledge. And much easier to mine than lithium
Oh, it's just a thermopile put out in the sun.
I can see why it never caught on then. You'd be relying on the difference in temperature between the hot side of a thing painted black put in the sun and the cool side in the shade. The amount of energy you'd get from such a setup would be infinitecimal. I'd expect you'd need to do an absurd amount of work and use an absurd amount of material just to power a single house.
The amount of energy it would take to build a "solar cell" thermopile that'd generate 1.5v with a quite high internal resistance would probably be in the megawatt-hours, likely from coal and oil.
There were some numbers in one of the links I posted, hopefully that is able to give some solidity to the theory.
It was early when I read the article, I got the impression that the 9W was for the furnace version of the thermopile electric generator.
The larger versions generated 45, 60 and 240 watts. Another source said 500 watts.
What is the typical conversion efficiency of a solar powered thermocouple?
resilience.org/…/how-to-build-a-low-tech-solar-pa…
I want to read more about this, as there is some speculation that the guy may have invented an actual PV panel. Difficult to say without more research… He was also a prolific inventor.
Here’s a whole lot more detailed information with sources:
resilience.org/…/how-to-build-a-low-tech-solar-pa…
Whoa, thanks for the link! Fascinating! So this WAS potentially an early non-silicone PV panel.
Sadly, reference #18 does not actually list a reference but a statement by t Mr. Cove which is impossible as he is currently deceased.
ITT: people who didn’t read past the headline
Maybe, but the result is the same. The arguments in the article sound good but aren't really that compelling. The points people make here are good.
This is one of the rare cases where the answer to a headline question is "yes"
.
Put up a shitty leading headline and this is what you’ll get.
You weren’t allowed to put your own headline up for these types of posts.
The point is, the behavior is to be expected, regardless of how it got there.
Yes.
Photoelectric efficiency was pretty bad back then. It had only been discovered in 1887. Einstein had just studied the photoelectric effect in 1905 and won a Nobel prize for analyzing it in 1921.
www.aps.org/publications/apsnews/…/history.cfm
It wasn’t like getting rid of the guy would’ve destroyed knowledge about it or the potential for the business. The devices were listed in the patent office and the technology was public knowledge. It just couldn’t compete with cheaper and more energy dense sources like oil. Electric cars were a thing even in the late 1800s but the technology was so poor they lost to internal combustion.
Interestingly, my parents remember electric milk delivery trucks in the 1950s & 60s.
The technology could have been improved if there was investment. Just look how much has been invested in ice vehicle drivetrains… It’s a wonder they work at all!